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A theoretical model of dynamic instability of a system of linear one-dimensional microtubules �MTs� in a
bounded domain is introduced for studying the role of a cell edge in vivo and analyzing the effect of compe-
tition for a limited amount of tubulin. The model differs from earlier models in that the evolution of MTs is
based on the rates of single-mesoscopic-unit �e.g., a heterodimer per protofilament� transformations, in contrast
to postulating effective rates and frequencies of larger-scale macroscopic changes, extracted, e.g., from the
length history plots of MTs. Spontaneous GTP hydrolysis with finite rate after polymerization is assumed, and
theoretical estimates of an effective catastrophe frequency as well as other parameters characterizing MT
length distributions and cap size are derived. We implement a simple cap model which does not include
vectorial hydrolysis. We demonstrate that our theoretical predictions, such as steady-state concentration of free
tubulin and parameters of MT length distributions, are in agreement with the numerical simulations. The
present model establishes a quantitative link between mesoscopic parameters governing the dynamics of MTs
and macroscopic characteristics of MTs in a closed system. Last, we provide an explanation for nonexponential
MT length distributions observed in experiments. In particular, we show that the appearance of such nonex-
ponential distributions in the experiments can occur because a true steady state has not been reached and/or due
to the presence of a cell edge.
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I. INTRODUCTION

Microtubules �MTs� are intracellular polymers which pro-
vide a part of the cytoskeleton and are responsible for many
cell functions including division, organelle movement, and
intracellular transport. A cell is a living object, and as such it
has to constantly adjust to and communicate with a changing
environment. For this purpose, MTs possess a property called
dynamic instability, which enables them to promptly switch
between two modes, growth and shortening �1–3�. This is
achieved through MT having a stabilizing cap which keeps
the MT from disassembling. The MT tends to depolymerize
when the cap is lost �2–5�. The cap gradually hydrolyzes and
becomes unstable as well, and so for the MT to survive it has
to grow to renew its cap.

The existence of a guanosine triphosphate �GTP� cap at
the end of MTs �4� and the phenomenon of dynamic insta-
bility �1� were discovered in the early 1980s. Hill and Chen
used a Monte Carlo approach to simulate this behavior �2,6�,
employing a representation of a MT in which its cap could
consist of many units �heterodimers�. One of the main out-
comes of their work was a suggestion that a two-phase �cap,
no cap� model of dynamic instability, based only on observ-
able macroscopic rates of phase and length changes, was
sufficient to understand the behavior of the ensemble of MTs
�cf. �5�, Figs. 4–6�. This phenomenological approach has
been prevalent since then in modeling the behavior of an
ensemble of MTs at the cellular level and in vitro �5,7–15�.

In order to advance the understanding of the assembly of
individual MTs, in 1990 Bayley et al. �16� developed the
computational molecular-level lateral cap model, in which

the cap consisted of a single layer of tubulin-GTP. Quite
recently many computational molecular-level models of a
single MT began to emerge �17–21� which try to incorporate
biological details observed due to advances in the experi-
mental techniques. In particular, it is now known from the
experiments that the tips of MTs can have geometrical con-
figurations typical to growing and shortening MTs, which
differ from one another �e.g., �3��. This is closely related to
the idea of the structural, and not necessarily a GTP cap �17�,
when due to tensile stresses inside the elastic body of a MT,
its shape deforms from a cylinder near the tip.

Flyvbjerg et al. �22,23� introduced an elegant analytical
model of the GTP cap dynamics based on a one-dimensional
�linear� representation of a MT. It incorporated constitutive
processes of spontaneous and vectorial hydrolyses inside the
MT and fluctuating growth of the cap size. The mesoscopic
scale of these processes is larger than the molecular scale,
but is smaller than the scale of the phenomenological mac-
roscopic changes. It roughly coincides with the scale of reso-
lution of a microscope, and it allows us to define a unit with
the length of the order of a tubulin heterodimer.

In both in vitro and in vivo experiments, the dynamics of
MTs has been observed under a large variety of physical
conditions and in various chemical environments. A lot of
data at macroscopic scale have been accumulated including
parameter values describing the MT dynamics and length
distributions. Can these values be predicted based on the
conditions of the experiments? How would a change in am-
bient conditions or the presence of spatial constraints affect
observables? These questions are difficult, if not impossible,
to answer using the models with postulated observable �mac-
roscopic� rates.

In this paper we analyze a model of MT dynamics in a
finite domain bounded by the cell edge, which involves com-
petition between individual MTs for tubulin. The model is*Electronic address: malber@nd.edu
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based on a linear one-dimensional �1D� approximation of a
MT structure. We consider the role of the boundary and ex-
tend the model to incorporate finite hydrolysis. Our model is
different from earlier works �11,15� addressing the role of the
edge in that we explicitly consider the concentration depen-
dence of the dynamic instability parameters, as well as a
competition for a limited tubulin pool. Although the cap
model described in the first part of the paper deals with a
single MT, the second part of the paper focuses on studying
cellular level behavior of many MTs using the link between
the mesoscale and the macroscale provided by the cap
model.

Namely, we use a generalization of a mesoscopic model
of MTs introduced in �24�. Instead of postulating macro-
scopic rates �2,5� or deducing them from numerical simula-
tions �6�, as was done by Hill and Chen, we estimate them
analytically from basic mesoscopic rates of �de�polymeriza-
tion and hydrolysis of a single unit. This results in a higher-
resolution analytical model which may be more suitable for
today’s higher-resolution experiments and can partially ad-
dress the questions posed two paragraphs above.

Recent papers �25,26� deal with modeling similar biologi-
cal problems. The method of �25� is based on using macro-
scopic rates, while �26� does not consider finite domain size
and competition for tubulin. The analyses differ as well.

There are two reasons that justify our choice of a meso-
scale approach to modeling of dynamic microtubules. �i� The
intermediate scale of our model is appropriate for studying
the behavior of MTs at the cellular level, but without postu-
lating the macroscopic/observable rates. �ii� A mesoscale ap-
proach is appropriate given currently available experimental
data. In an ideal case, experimental results would provide a
modeler with biochemical properties �such as rate constants�
that determine the interactions between molecules such as
tubulin. The first experimental results on microtubule dy-
namics at molecular resolution have been published only
very recently �27�. Although these results are important, they
leave several central structural questions unanswered.

The paper is organized as follows. The conceptual model
and its computational implementation are presented in Sec.
II. Next, in Sec. III we develop a cap model where the cap
can have any number of units—see Fig. 1�b�. This cap model
differs from previous models in that it does not involve vec-
torial or induced hydrolysis. Using this model we derive ap-
proximate expressions for observable rates. We then describe
in Secs. IV and V a quantitative theoretical analysis of a
lower-resolution model with the cap being treated as a single
unit—see Fig. 1�a�. The influence of the cell edge is also
studied there. Section V describes balance between polymer-
ized and free tubulin in a bounded domain with a fixed total
amount of tubulin present. Finally, we discuss and summa-
rize our findings in Secs. VI and VII.

II. MODEL DESCRIPTION, PARAMETERS,
AND NOTATIONS

In this section we describe a basic model of dynamics of
MTs. We consider a domain of size Lx�Ly �Lz with Nn
available nucleation sites for MTs in its center. Nn is the

maximal number of MTs—cf. Table I. For simplicity, in our
study of the role of the boundary �e.g., cell edge� we assume
that all MTs have an identical maximal allowed length. All
MTs grow from nucleation sites �there is no spontaneous
nucleation�, and MTs grow at one end �usually the so-called
plus end� only. There is a fixed amount of total tubulin in the
domain. This tubulin is present in two forms: free tubulin in
the solution and polymerized tubulin constituting the MTs.
Free tubulin is taken up by growing �polymerizing� MTs and
is released back into the solution by shortening MTs. In gen-
eral, free tubulin �Tu� diffuses inside the domain. In this
paper we assume that the diffusion of free Tu is fast and does
not lead to a diffusion-limited reaction rates. This is in agree-
ment with �28�. Moreover, we assume uniform concentration
of free tubulin throughout the domain which implies instan-
taneous diffusion. �For studies of the effects of tubulin dif-
fusion see �29,30�.�

In this paper a MT is represented at each moment in time
in the form of a 1D straight line consisting of a certain num-
ber of units of a predefined length. Each unit belonging to a
MT can be in either a growth-prone state or a shortening-
prone state. We will refer to them as GTP �or T� state or GDP
�or D, from guanosine diphosphate� state, respectively. All
free tubulin is assumed to be in a T state. When a unit joins
the MT it is initially in a T state. The probability that the
internal units have hydrolyzed �transformed to a D state�
increases with time. When MT disassembles �shortens� these
D units, upon becoming terminal, have higher probability to
disassemble and return to the solution than the terminal T
units. Upon return to the solution they immediately switch to
the T state. The terminal T unit does not hydrolyze but can
with a certain probability depolymerize �drop from MT end�.
Incorporation of a new unit at the MT tip triggers the hy-
drolysis process of the previously terminal unit. This descrip-
tion seems appropriate in view of �3�.

The dynamics of the MTs is determined by five meso-
scopic rates KgT �KgD� and KsT �KsD�, which are the rates of
MT growth and shortening �i.e., adding one more unit from
the solution on top of the current terminal unit and losing this
current terminal unit to the solution� when the terminal unit
is in state T �D� and the hydrolysis rate Kh of the internal
units which are in state T. If the terminal unit has to hydro-

FIG. 1. Schematic representation of the model.
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lyze in order to depolymerize �and its hydrolysis rate is not
faster than that for the internal units�, then KsT�Kh.

For numerical simulations, shortening rates are taken to
be independent of c while growth rates are assumed propor-
tional to c at the location of MT tip:

KgT,gD = kgT,gDc . �1�

Such specific dependence of the growth and shortening rates
on c, though, is not required for many of the theoretical
results we report.

When the MT reaches boundary of the domain it is not
allowed to grow anymore and will eventually lose its termi-
nal unit initiating with certain probability a shortening phase.
There are two more rates at the domain boundary of impor-
tance in the model: a rate Kn of nucleation from existing
seeds and a rate Ke of edge-induced catastrophe, which can
also depend on c. Appendix A contains a brief description of
a numerical algorithm we used in our simulations.

In what follows, we will impose restriction on a maximal
length of a MT �upper bound, e.g., due to a cell edge�. We
will call zero a lower bound.

Observables

The standard experimental observables describing the dy-
namic behavior of a single MT are derived from the MT
length versus time plot. Typical length history plots of MTs
are shown in Fig. 2. Due to the two-state nature of the tubu-
lin units inside the MT, the fluctuations in this length may be
large and even in the �macroscopically� steady state each MT
can repeatedly change its length all the way from zero to
some characteristic length or to the boundary. If no boundary
is present and if free tubulin concentration stays high enough
�if KgT and KgD are high enough�, MTs can grow unbounded
�7,29,31�. From a sawtoothlike evolution of a MT length four
parameters can be extracted: the velocity/rate of growth, the
velocity/rate of shortening, the average time of growth be-
fore switching to shortening, and the average time of short-
ening before switching to growth. The inverses of these
times define the so-called catastrophe frequency and the res-
cue frequency, respectively. Note that brief growth or short-
ening intervals may pass unnoticed in the analysis of experi-
mental data. Some models of dynamics of MTs use these
four parameters as given constants for constructing analytical
solutions �7,11� ignoring their microscopic origin. In Sec. III
we use mesoscopic rates to derive the observable growth
velocity and catastrophe frequency instead of setting them
from the beginning.

TABLE I. Notation highlights. The dash �—� means that the
considered parameter/variable is dimensionless.

Symbol Definition Dimensions

c Concentration of free tubulin �M

ceq
� Critical concentration of free tubulin �M

ctot Total concentration of tubulin �M

kgT Second order rate of adding a unit
on top of a terminal T unit

�M−1 s−1

kgD Second order rate of adding a unit
on top of a terminal D unit

�M−1 s−1

� Parameter of exponential distribution
�number of units�

—

� Characteristic cap size �number of units� —

m Mean length �number of units� of MTs —

n Coarsened step size in the cap model
�number of units�

—

� �n−1� / ��−1� —

Ke Rate of the edge-induced catastrophe s−1

Kh Rate of hydrolysis �transformation
to D state� of internal T units

s−1

KgT Rate of adding a unit on top of a
terminal T unit

s−1

KgT
ef f Effective rate of growing by one unit

in growth phase
s−1

KgT
obs Rate of growing by n units in growth

phase=KgT
ef f /n

s−1

KgD Rate of adding a unit on top of a
terminal D unit

s−1

Kn Nucleation rate of a MT s−1

KsT Rate of depolymerization of terminal
T unit

s−1

KsT
ef f nKsT

obs s−1

KsT
obs Rate of shortening by n units in growth

phase=catastrophe frequency
s−1

KsD Rate of depolymerization of terminal
D unit

s−1

L Maximal length �number of units� of
MTs in domain with upper bound

—

Lx, Ly, Lz Domain sizes in the numerical
simulations

m

Mg�l� Number of MTs of length l �number
of units� in growth phase

—

Ms�l� Number of MTs of length l �number
of units� in shortening phase

—

N0 Number of free nucleation seeds —

NMT Number of MTs, �Nn —

Nn Total number of nucleation seeds —

FIG. 2. �Color online� Length history plots of three arbitrarily
selected MTs. Zero time here corresponds to 80 s from the start of
the simulation. Here Kh=10, ctot=10, and other parameters are
listed in Table II. See also Fig. 5.
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III. CAP MODEL

Carlier and colleagues �4,32,33� have provided experi-
mental evidence that the GTP cap of the MTs is not restricted
to units at the very tip. This suggests that the hydrolysis is
not instantaneous, a conclusion also supported by work on
yeast tubulin �34,35�. To incorporate this feature into our
approach we develop a model for the cap. In this section we
show that using this model, based on the underlying mesos-
copic laws, one can predict the observables: the catastrophe
frequency and the velocity �rate� in the growth phase of MTs.
In other words, the mesoscopic laws of the MT dynamics,
governing single-unit polymerization/depolymerization and
hydrolysis, can be related to the macroscale �observable� dy-
namics of a MT.

When Kh��, the MT cap in our model consists mainly of
T units �cf. Fig. 1�b�� and possibly of a few D units and has
some characteristic length �number of units� �	1. When
Kh→�, then �=1 because only the terminal unit is not al-
lowed to hydrolyze and it is in a T state. Our approach is
based on coarsening the resolution in the growth phase so
that only blocks of the order of cap size, n��, are resolved.
By catastrophe we understand the loss of the cap. In what
follows we will establish a connection between coarsened
“observed” rate constants KgT,sT

obs of growing or shortening by
one block of n units �in the growth phase� and the original
rates KgT,sT and Kh. As will become apparent from the fol-
lowing derivations, KsT

obs approximates the catastrophe fre-
quency, while nKgT

obs is the effective rate of addition of a
single unit on top of the MT, in the growth phase. There is no
need to rescale KgD,sD if the free tubulin concentration is not
too low. Therefore, we only consider a model for the MT cap
and do not alter the rest.

Let us consider the cap model in detail. In what follows
we neglect the fluctuations in � due to randomness in hy-
drolysis, and we assume that each T unit is hydrolyzed after
staying an internal unit for a time 
th=1/Kh. After the rescue
or nucleation event occurs the cap begins to grow. It has time

tg+
th to elongate, where 
tg=1/ �KgT+KsT� is the time of
a single-unit step in the growth phase. After that its average
length remains constant �under assumption that no catastro-
phe occurs during this time�. For the catastrophe to occur the
cap should be lost, due to fluctuations in cap size and in the
growth velocity �2,5,36�. In our analysis we consider two
scenarios for cap loss: �i� roughly half of the cap is lost due
to random nature of MTs growth, and the second half gets
hydrolyzed during this time, or �ii� the whole cap is lost due
to random fluctuations in MT growth. Keeping in mind that
the terminal unit cannot be lost as a result of hydrolysis, in
description �i� we require that ��+1� /2 and ��−1� /2 units be
lost due to fluctuations in MT growth and propagation of
hydrolysis front, respectively. We define

� =
n − 1

� − 1
. �2�

In case �i� n= ��+1� /2 and �=1/2, while in case �ii� n=�
and �=1. It is important to stress that � is introduced as a
fixed parameter set a priori, based on the scenarios of cap
loss similar to �i� and �ii�. The two descriptions �i� and �ii�

determine the duration of the coarsened step:


tg
obs �

1

KgT
obs + KsT

obs = �
th + 
tg � �
1

Kh
+

1

KgT + KsT
.

�3�

For a given n, in order to rescale and coarsen the dynam-
ics in the growth phase we require that both the average
velocity and the diffusion coefficient of the MT tip remain
unchanged, in the hypothetical case of no hydrolysis. For a
random walk on a line, with probability p to jump to the
right and q=1− p to jump to the left, the average velocity
is v= �p−q�
x /
t and the diffusion coefficient is D
=2pq
x2 /
t. Here 
x is the step length and 
t is the time
per step. In the case of the original walk p= pg=KgT
tg,

x=1, and 
t=
tg, while in the case of the rescaled walk
p=KgT

obs
tg
obs, 
x=n, and 
t=
tg

obs is given by Eq. �3�. After
introducing the effective rates of adding or losing one unit
�as opposed to one block�,

KgT,sT
ef f � nKgT,sT

obs , �4�

and using conservation of v and D we obtain that

KgT
ef f − KsT

ef f = KgT − KsT, �5�

KgT
ef fKsT

ef fn

KgT
ef f + KsT

ef f =
KgTKsT

KgT + KsT
. �6�

From Eqs. �3� and �4�, n / �KgT
ef f +KsT

ef f� can be found and sub-
stituted into Eq. �6�, resulting in

KgT
ef fKsT

ef f = � , �7�

where

� �
KgTKsT

1 + �
KgT + KsT

Kh

. �8�

After solving Eqs. �5� and �7� and choosing only positive
solutions we obtain that

KgT
ef f =

KgT − KsT + ��KgT − KsT�2 + 4�

2
, �9�

KsT
ef f =

− KgT + KsT + ��KgT − KsT�2 + 4�

2
. �10�

Expression �9� displays some expected features: namely,
when

Kh → � ⇒ KgT
ef f → KgT

and when

Kh → 0 ⇒ KgT
ef f → �KgT − KsT + �KgT − KsT��/2

= 	KgT − KsT, KgT � KsT,

0, KgT � KsT.



In general, max�0,KgT−KsT��KgT
ef f �KgT.

Equation �6� combined with Eqs. �9� and �10� yields
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n =
KgTKsT

KgT + KsT

��KgT − KsT�2 + 4�

�
, �11�

and Eq. �2� can now be used to determine �. On the other
hand, � can be approximated as follows:

� � KgT
ef f
th + 1 =

KgT
ef f

Kh
+ 1, �12�

where the term KgT
ef f
th approximates the number of added

units after the beginning of a growth phase, before the hy-
drolysis front starts moving. In fact, Eq. �12� can be used as
a definition of � and n can be found from Eq. �2�. Then there
is no need for Eq. �3� as Eqs. �5�, �6�, and �12� form a closed
set of equations. This approach, however, leads to a cubic
equation for KgT

ef f, while in the above approach we need to
solve a quadratic equation, which is much simpler. Neverthe-
less, the definition of � through Eq. �12� seems to work better
in the limit of KgT→0. Namely, substituting Eq. �12� into
Eq. �2� yields n=1+�KgT

ef f /Kh and the only non-negative so-
lution of this equation together with Eqs. �5� and �6�, in the
limit KgT→0, is KgT

ef f =0, KsT
ef f =KsT, and n=1. Indeed, it

seems reasonable to postulate that n→1—i.e., there is no
rescaling—when KgT→0. This does not follow from Eqs. �8�
and �11�, which lead to n→1+�KsT /Kh	1 instead.

Using the above developments, it is possible to derive
scaling behaviors of various quantities as functions of, e.g., c
and Kh. For example, substituting Eqs. �2� and �12� into Eq.
�8� and using Eq. �7� together with Eq. �4� leads to

KsT
obs �

1

n

KgTKsT

KgT
ef f + �n − 1��KgT + KsT�

� �
KsT

n2 , KgT  KsT,

KsT

2n�n − 1�
, KgT  KgT

ef f , �13�

so that the catastrophe rate �frequency� KsT
obs scales as n−2

��−2. This is characteristic of diffusive scaling because the
time to catastrophe is determined by the diffusive movement
of the hydrolysis front relative to the MT tip. If the free
tubulin concentration c is not too small, then Eqs. �11�, �8�,
and �1� yield n�c and hence KsT

obs�c−2, which is in at least
qualitative agreement with previous predictions �13,37�. The
scaling KsT

obs�n−2 might have been postulated, as well, which
would have led us to an additional version of the solution of
the cap model.

To provide another scaling example, let us now assume
that Kh is small and KgT�KsT. Then from Eq. �8� it follows
that ��KhKsT / �2���Kh. If � �KgT−KsT�2—i.e., if Kh is
not too small—then Eq. �11� yields n�Kh

−1/2 and hence �
�Kh

−1/2 as well. Notice that it is the same scaling as derived
for actin polymers ��38�, Eq. �3��.

IV. ENSEMBLE DYNAMICS OF MICROTUBULES

In this section we treat the cap as a single effective unit—
cf. Fig. 1. Thus the model essentially reduces to the two-
phase model proposed in �5�. First, we rederive the length

distribution of MTs, which are known in the literature. In
particular, we study the role of upper bound �e.g., cell edge�.
We use these results for analyzing in the next section com-
petition for a finite tubulin pool. We also consider the steady
state critical concentration of free Tu.

In what follows, we use either the discrete or the continu-
ous description of MT dynamics, whichever is convenient.
We assume that the continuous model provides a good ap-
proximation of the discrete model. The continuous approach
was discussed in �7,39,40� while an analogous discrete ap-
proach was developed in �5,11�. Following �7� we write
down the equations for length distributions of MTs in growth
and shortening phases in the form

�tMg = − KsT
obsMg + KgDMs − KgT

ef f�lMg, �14�

�tMs = KsT
obsMg − KgDMs + KsD�lMs, �15�

where Mg,s�l , t� are densities of MTs of length l at time t in
the growing �g� and shortening �s� phases.

Equations �14� and �15� can be used to describe regular
diffusion with drift if we do not distinguish between the
phases �see also �15��. However, it is important to stress that
these equations do not have diffusion terms for Mg,s�l , t� and
hence switching phases back and forth is the only mecha-
nism of spreading of these distributions present. This is in
agreement with our simulations in the case of instantaneous
hydrolysis of internal units. Notice that diffusion terms are
used in �5�.

First, consider a semi-infinite domain. Equations �14� and
�15� with the boundary condition Mg,s�l=��=0 have the fol-
lowing steady-state solution

Mg = Ae−l/�, �16�

Ms =
KgT

ef f

KsD
Ae−l/�, �17�

where

1

�
�

KsT
obs

KgT
ef f −

KgD

KsD
. �18�

The necessary condition for the existence of a steady state in
the case without a boundary is given by �	0. The prefactor
A is a normalization coefficient which depends on the total
number of MT nucleation seeds present and on the nucle-
ation probability.

We now add a constraint limiting the maximal length of
MTs to be L. MTs cannot become longer due to a barrier—
for example, a cell edge—as is often the case in vivo, espe-
cially when the cell is in the interphase and the MTs are
relatively long. For simplicity we assume that L is identical
for all MTs. We still can use Eqs. �14� and �15� inside the
domain for 0� l�L and consider a steady state. Adding up
these two equations then leads to �l�−KgT

ef fMg+KsDMs�=0,
which means that the spatial derivative of the flux �of the MT
tips, considered as random walkers� is zero, meaning that the
flux is uniform. However, in the closed system this flux must
be zero and hence

ANALYSIS OF A MESOSCOPIC STOCHASTIC MODEL… PHYSICAL REVIEW E 74, 041920 �2006�

041920-5



Ms =
KgT

ef f

KsD
Mg. �19�

It follows that Eqs. �16�–�18� still hold inside the domain,
except for � not being necessarily positive, which is in agree-
ment with previous work �11�. This means qualitatively that
there might be a steady-state distribution of MTs in which
most of them are close to the upper boundary �e.g., cell
edge�, while only a few are short.

Critical concentration of free tubulin

Let us consider the limiting case 1/�=0 �cf. Eq. �18��.
This defines the upper limit of the concentration of free tu-
bulin ceq

� at which the steady state in the semi-infinite domain
still exists �cf. �7��. Let us use Eq. �1� and define

a =
KsT

kgT
, b =�KsTKsD

kgTkgD
. �20�

Because the MTs in the growth phase are less likely to
shorten than are MTs in the shortening phase, a�b. In gen-
eral, ceq

� � �a ,b�. Notice that slowdown of hydrolysis reduces
ceq

� �Kh�. When hydrolysis is instantaneous, then c reaches its
maximal value ceq

� ���=b. When there is no hydrolysis at all,
then ceq

� �Kh� reaches its minimal value ceq
� �0�=a, meaning

that the average growth rate in this case, kgTceq
� �0�−KsT, is

zero.
One can get a scaling estimate of ceq

� if it is far enough
from both a and b. Assume that KgTKsT and KgTKh.
Using Eq. �1�, then KgT

ef f �KgT�c. Now, � is of order of 1, so
that from Eqs. �8� and �11� it follows that ��KsTKh�KgT

2

and n�KgT /Kh�c /Kh, respectively. Hence KsT
obs�KsT /n2

� �Kh /c�2. Substituting these scaling relations into 1/�=0
and using Eq. �18� yields ceq

� ��Kh.
Notice that if there are no rescues, kgD=0, then ceq

� is
infinite �see also �37�� and unbounded growth cannot happen.
This is so because without rescues the MT depolymerizes
completely after the catastrophe, no matter how long it was
before.

V. COMPETITION FOR TUBULIN

In Sec. IV we have shown the existence of a steady-state
distribution of MTs inside a domain. It is conceivable that by
sensing and controlling free tubulin concentration and the
number of MTs the cell regulates MT dynamics, as suggested
in �24,37�. In what follows we show in detail how to deter-
mine a steady-state concentration of free tubulin, c, which is
the key to finding steady-state characteristics of MTs in a
closed system. The main goal of this section is to derive
expressions for the average number of units per MT, m, and
the number of MTs, NMT, as functions of c and the other
parameters. These functions are needed to determine c from
the conservation of total tubulin. Because m cannot extend
beyond the domain boundary and because NMT is less than or
equal to the number of nucleation sites, Nn, the number of
polymerized units in a bounded domain stays restricted as
the amount of total Tu grows.

In what follows we assume that the total amount of tubu-
lin is constant and we consider bounded domain of volume

V. We also assume instantaneous diffusion so that the con-
centration of free tubulin is uniform throughout the domain.
Hence,

Ntot = Nfree + mNMT, �21�

where Ntot is a total number of tubulin units in the domain
and Nfree is a number of free tubulin units. By dividing this
formula by V we obtain expression for concentrations mea-
sured in micromolars ��M�:

ctot = c +
mNMT

10−3NAV
, �22�

where V is given in m3 and 1 �M is equal to 10−6NA units
per liter or 10−3NA units per m3; NA�6.022�1023 mol−1 is
Avogadro’s constant. We will use this expression for study-
ing MTs in the cases of unbounded and bounded domains.

A. Unbounded domain

It has been shown in Sec. IV that the steady-state distri-
bution of MT lengths in this case is exponential as described
by Eqs. �16� and �17� with � representing the mean length of
a MT:

m = � . �23�

To find NMT for a given Nn, we use a balance equation for the
number of available nucleation sites N0�Nn−NMT:

KsT
obsMg�l = 1� + KsDMs�l = 1� = KnN0, �24�

where Kn is the nucleation rate, which in general depends on
c. The left-hand side of Eq. �24� describes the rate of pro-
duction of available nucleation sites by completely depoly-
merizing MTs. The first term represents those MTs which
experience a catastrophe, while the second term stands for
those MTs which are already in the shortening phase. Using
Eqs. �16� and �17�, and assuming that �1, yields

A�KsT
obs + KgT

ef f� � KnN0. �25�

In addition, approximating summation by integration,

NMT = �
l=1

�

�Mg�l� + Ms�l�� � �1 +
KgT

ef f

KsD
�A� , �26�

results in

NMT �
Nn

1 +
KsT

obs + KgT
ef f

�Kn�1 + KgT
ef f/KsD�

. �27�

Substituting Eqs. �23�, �27�, and �18� into Eq. �22�, and using
dependence of the rates on concentration c, Eq. �1�, yields an
equation ctot=F�c� at steady state. This equation relates free
tubulin concentration c and total concentration ctot as a func-
tion of all given parameters.

B. Bounded domain

Here again we impose limitation on the maximal possible
length of MTs not to exceed L. In the case of a bounded
domain a steady-state solution of Eqs. �14� and �15� can be
calculated, and then m and NMT are determined in a way
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similar to the previous case. Notice that a steady state does
exist even if c	ceq

� . Since 0�m�L and 0�NMT�Nn al-
ways hold, the second term in Eq. �22� is non-negative and
bounded. Therefore, when c goes from 0 to � so does ctot. If

the right-hand side of Eq. �22� monotonically increases with
c, then there is a unique physically meaningful c for each ctot
at steady state.

It is shown in Appendix B that now

NMT �
Nn

1 +
KsT

obs + KgT
ef f

Kn��1 + KgT
ef f/KsD��1 − e−L/��� + �KgT

ef f/Ke��1 + KgD/KsD�e−L/��

�28�

and

m �
�1 + KgT

ef f/KsD���� − e−L/��L + ��� + L�KgT
ef f/Ke��1 + KgD/KsD�e−L/�

�1 + KgT
ef f/KsD���1 − e−L/�� + �KgT

ef f/Ke��1 + KgD/KsD�e−L/� . �29�

When �	0 and L→�, Eqs. �28� and �29� reduce to Eqs.
�27� and �23�, respectively. When KgT

ef f →0 and KgD→0, then
�↓0 �so that �	0�, NMT→0, and m→0. When KgT

ef f →� and
KgD→�, then �↑0 �so that ��0�, NMT→Nn, and m→L, as
expected.

VI. DISCUSSION OF THE RESULTS

A. Comparison with existing cap models

The cap model presented in this paper differs from the
approaches used in �2,5,22,23�. First, we do not postulate the
catastrophe frequency and growth velocity or derive them
from numerical simulations, as was done in �2,5�. Instead,
we analytically derive these macroscopic rates from small-
scale rates �such as chemical rate constants�. Second, we
employ only spontaneous hydrolysis and do not use induced,
or vectorial, hydrolysis; both types of hydrolysis were used
in �22,23�. Our model agrees with the experimental data ana-
lyzed in �22,23� as can be seen from the main panel in Fig. 3
Specifically, the predicted dependence of the catastrophe fre-
quency on MT growth velocity is in agreement with experi-
mental data.

The cap dynamics in the model proposed by Flyvbjerg et
al. �22,23� is modeled by addition of tubulin from the solu-
tion to the MT tip. This addition �polymerization� is faster
than the propagation of the induced hydrolysis front �low end
of the cap�. Therefore, the cap length would grow infinitely
were it not for the spontaneous hydrolysis at some point
inside the cap. When it occurs, the cap is redefined as an
interval between this spontaneous hydrolysis point and the
MT tip. In this way, the average cap size can be kept constant
at steady state. According to Flyvbjerg et al. �22,23�, catas-
trophe occurs when this cap is lost, and it is postulated that
the remaining GTP-Tu units below the cap are not capable of
rescuing the MT. This assumption is made in order to allow
for catastrophe to occur. Otherwise, in many cases the rescue
would immediately follow the cap loss. While this picture is
widely accepted, in our alternative model the picture is even
simpler. We use only one type of hydrolysis, and we do not

need to make any additional assumptions. In our model,
there is a hydrolysis front due to spontaneous hydrolysis of
old enough units �see Sec. III�. The velocity of this front is
governed by the age of the units inside the MT, and hence it
is always approximately equal �with fluctuations� to the
growth velocity. Faster growth velocity leads to a longer cap,
reducing the catastrophe frequency.

Dilution experiments have shown that sharp reduction in
the concentration of free Tu to low or zero values results in
collapse of the MTs after a certain delay. Importantly, this
delay is practically independent of the initial free Tu concen-
tration �42�. Flyvbjerg et al. explain this phenomenon by
arguing that the dilution results in domination of spontaneous
hydrolysis which regulates the waiting time before the col-
lapse. Therefore, this time is almost independent of the initial
cap size. Our model yields the following simple explanation.
When concentration of free Tu becomes very low, two events
must occur for the cap to disappear. The terminal unit should
be lost �rate KsT� and the next unit should hydrolyze �rate
Kh�. If this next to last unit is old enough to hydrolyze then,

FIG. 3. �Color online� Frequency of catastrophe KsT
obs as a func-

tion of MT growth velocity vg. Dots represent experimental data
�22,41�. Solid and dashed lines correspond to �=1/2 and �=1,
respectively, and were obtained using the model �Sec. III�. Inset:
two upper curves on the right are KgT

ef f /KgT and two lower curves on
the right are KsT

ef f /KgT
ef f.
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with high probability, the rest of the cap has already hydro-
lyzed. These events do not depend on the cap size.

Dilution experiments reported in �42� and cited in �22�
determine the average waiting time before the catastrophe as
roughly 5–10 s. Therefore, in Fig. 3 we set Kh=KsT
=0.15 s−1. If the shortening velocity �KsD� is much larger
than KsT and if the loss of the terminal unit is conceptualized
as a two-stage process of hydrolysis and then falling, the
equality Kh=KsT would indicate that the hydrolysis rate of
the terminal unit equals the hydrolysis rate of the internal
unit. Notice that we were not able to fit the catastrophe fre-
quency data if KsT and Kh were significantly different. In the
dilution experiments spatial resolution was about 0.25 �m
�42�, which is about 30 heterodimers �per protofilament�, so
that actual waiting time before losing the terminal unit �het-
erodimer� might be faster than the reported waiting time be-
fore the collapse. We used Eq. �1� with kgT=0.3 �M−1 s−1;
however, any value of kgT can be used, because it enters the
formulas only through KgT=kgTc and there is no explicit c
dependence in the figure. The unit length is taken to be the
length of one heterodimer of Tu, 8 nm, and hence 1 unit/ s
�0.5 �m/min. Therefore vg ��m/min��KgT

ef f /2 �units/ s�.
In the inset of Fig. 3 we show the values of KsT

ef f /KgT
ef f and

KgT
ef f /KgT. It is seen that for vg	0.2 one has KsT

obs�KsT
ef f

�KgT
ef f and hence vg�KgT

ef f �c.

B. Competition for tubulin and the edge effect

Here we study competition for a limited pool of free tu-
bulin and combine it together with the cap model. At steady
state, the dependence of the free tubulin concentration c on
the total tubulin concentration ctot is governed by tubulin
mass conservation, Eq. �22�. The resulting value of c, in turn,
defines the dynamics of MTs and their ensemble distribu-
tions.

In the case of an unbounded spatial domain, we have
reproduced the prediction of the Oosawa-Kasai model �43�
including the existence of a critical concentration of free tu-
bulin ceq

� �see thin lines in Fig. 4�. The steady state cannot
exist above this value. Depending on the choice of param-
eters, the transition from almost linear growth of c, c�ctot
for low ctot, to the asymptotic value c=ceq

� can be made sharp
or smooth. �In the Oosawa-Kasai model, this transition is
assumed to be sharp, meaning that when ctot�ceq

� there are
no MTs and when ctot	ceq

� all the excess tubulin above ceq
�

goes into polymerized state.� When the probability of rescue
is zero, then ceq

� →� and our model describes the situation
considered in �37�.

If there is an upper bound on MT lengths, then at suffi-
ciently high concentrations of total tubulin, this bound inhib-
its further polymerization of MTs �edge effect�. Hence, the
steady-state free tubulin concentration can rise above its
critical value. This edge effect is demonstrated by the thick
lines in Fig. 4 and was first discussed in �24�. Under our
reference conditions, it is seen that for ctot	20 �M the edge
starts to play an important role. At sufficiently high ctot, the
edge reestablishes linear growth of c with respect to ctot. The
implications of this effect are as follows. If ctot is high
enough, the MTs grow persistently up until hitting the edge

which triggers their catastrophe. This is consistent with re-
cent experimental observations of persistent growth of MTs
in vivo �44�.

From our model it follows that by changing the number of
nucleation sites while keeping the total amount of Tu con-
stant the cell could regulate the transition between mitotic
�short� and interphase �long� MTs. As an example, assume
�=1/2, ctot=20, and the rest of the parameters, except Nn, as
given in Fig. 4. Then L�1400. For Nn=50 there are a few
long MTs with m=1100 and �=−334, while for Nn=500
there are many short MTs with m��=149. The physiologi-
cal relevance of such a behavior is addressed in detail in our
work �24�.

Next we compare in Table II Monte Carlo simulations
�see Appendix A� with the results obtained by using our
continuous model. We choose large domain size so that MTs
never reach the boundary and m=� �cf. Eq. �23��. We run
simulations for different parameter sets until steady state is
reached and then determine the free tubulin concentration,
number of MTs and their mean length and estimate the cap
size. Recall that only MTs in growth phase have caps. There-
fore, we estimate the cap size � of MTs in our simulations by
���1+KgT

ef f /KsD�� #T /NMT, where #T is the number of po-
lymerized Tu units in the T state. We also use Eq. �19�. For
the parameter values used in Table II a simplified formula for
the estimated cap size �� #T /Nn has been used.

Table II also contains theoretical estimates corresponding
to the simulated values discussed above. In addition, the
table includes theoretical estimates of ceq

� and of the cap size
based on Eq. �12�. In most cases the simulated results lie in
between our two theoretical approximations, for �=1/2 and
�=1, respectively, in agreement with the model description
of cap evolution. These approximations are given as two
adjacent numbers in the cells of the table displaying our
theoretical estimates. When, however, Kh becomes small and
c approaches a �Eq. �20��, our approximations seem to con-
sistently overestimate the number of MTs, NMT. This should

FIG. 4. �Color online� Steady-state concentration of free vs total
Tu in the unbounded �thin lines� and bounded �thick lines� domains.
For a bounded domain maximal MT length L is roughly 1400 units.
For an unbounded domain c reaches its asymptotic value ceq

� �Kh�.
The hydrolysis rate is Kh=10 s−1. Solid and dashed lines cor-
respond to �=1/2 and �=1, respectively. Other parameters are
Nn=200, V=10−17 m3=10−8 �L, kgT=5 �M−1 s−1, KsT=5 s−1,
kgD=0.5 �M−1 s−1, KsD=500 s−1, Kn=KgD, and Ke=KsT, and we
use Eq. �1�.
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be improved by rescaling the rest of the rates, KgD, KsD, Kn,
and Ke, which is outside of the scope of this paper.

C. Non-steady-state phenomena

It is often mentioned in the literature that the steady-state
length distribution of MTs observed in the experiments is
either exponential or bell shaped �8–10,45–47�. The expo-
nential distribution agrees with our model. The inability to
obtain a bell-shaped distribution seems to indicate a limita-
tion to our model. While we do not exclude the possibility
that some rates might depend on the MT length, as proposed
by �8,9�, or on the time spent in a given phase �48,49�, we
suggest two alternative ways of obtaining bell-shaped distri-
butions under certain conditions. First, one should be careful
in determining when the system reaches the steady state in
the experiment or simulation. As our simulations demon-
strate, the system reaches the constant free tubulin concen-
tration and MTs reach the constant mean length relatively
quickly. �The number of MTs does not change much hence-
forth.� By that time the MT length histogram is often bell
shaped as illustrated in Figs. 5 and 6. This can be explained
as follows. When MTs start growing from nucleation sites
there is an excess of free tubulin. Therefore, the growth is
originally unbounded, leading to a Gaussian shape. If the cell
edge �upper boundary� is far away, in the course of this
growth the free tubulin concentration drops and reaches its
steady-state value. At this time the shape can still be close to
a Gaussian �cf. �10� Fig. 4�. This is followed by a process of
a shape change of the MT length histogram with free tubulin
being constant. Eventually, this results in an exponential
shape and in the system reaching true steady state. The shape

relaxation is relatively fast in Fig. 5, while it is very slow in
Fig. 6. The shape relaxation occurs through diffusive ex-
change of polymer mass among the MTs, which might be
orders of magnitude slower than initial rate of polymeriza-
tion due to excess of free tubulin. This behavior is well de-
scribed in �50,51�.

A bell-shaped distribution can be also obtained in a
bounded domain when the steady-state concentration of free
tubulin is high enough for unbounded growth of MTs if it
were not for a cell edge �i.e., if c	ceq

� �. In this situation we
predict positive exponential distribution of MT lengths, in
the case when all MTs can reach identical maximal length
restricted by the edge, consistent with �11,15�. As can be
seen in experiments, however, MTs are curved and cell shape
is not ideally spherical or circular, so that different MTs ex-
perience different restrictions �e.g., �44,46��. This can lead to
a MT length histogram of a bell-shaped form, in true steady
state. Notice that in some simulations the free Tu concentra-
tion approaches its steady-state value in a nonmonotonous
way—see Appendix C.

VII. CONCLUSIONS

In this paper we analyze a model of MT dynamics in a
domain bounded by the cell edge which involves competi-
tion of individual MTs for tubulin. The model is based on a
mesoscopic linear 1D approximation of a MT structure and
includes finite hydrolysis of polymerized tubulin-GTP units.

We start by deriving analytical formulas linking meso-
scopic parameters �those describing the addition, loss, and
hydrolysis of individual units� to the macroscopic character-
istics of a system of dynamic microtubules. Specifically, we

TABLE II. Comparison of simulated and theoretical results. All values reported here are at or very close to steady state. Cells containing
two numbers show theoretical predictions for �=1/2 and 1, respectively. Domain size is Lx=Ly =10−4 and Lz=10−7 �m�. It is ensured that the
domain is long enough so that the MTs do not reach the boundary for the given parameters. Here kgT=5, KsT=5, kgD=0.5, KsD=500, and
KgT,gD=kgT,gDc. For nucleation rate we use Kn=KgD, i.e., a D seed, except for the third line, where it is a T seed, Kn=KgT. #T /Nn is an
estimate for the cap size—see Sec. VI B. Initially all Tu is free and its concentration is ctot. Notice that c�ceq

� .

Parameters Simulated results Theoretical estimates: n= ��+1� /2, n=� �see text�

Kh ctot Nn c m
#T

Nn
NMT ceq

� c � �
KgT

ef f

Kh
+1 NMT

� 36 2000 31.32 1416 0.759 1990 31.62 31.28 1430 1 1 1989

� 28 3000 27.46 117 0.734 2814 31.62 27.48 112 1 1 2797

� 28 104, T seed 26.48 92.7 0.780 9908 31.62 26.53 89.5 1 1 9909

105 36 2000 31.36 1401 0.997 1995 31.60, 31.57 31.25, 31.23 1437, 1444 1.0015 1.0016 1989

100 30 2000 20.78 2788 1.75 1992 21.05, 17.38 20.92, 17.29 2742, 3836 2.00, 1.82 2.03, 1.84 1994, 1996

30 15 2000 12.7 694 2.69 1969 14.7, 11.5 13.9, 11.2 347, 1139 3.16, 2.72 3.22, 2.77 1952, 1985

10 10 2000 7.51 758 3.94 1974 9.85, 7.48 9.02, 7.18 305, 857 5.04, 4.12 5.16, 4.20 1945, 1980

10 5 2000 4.91 35.1 2.25 1538 9.85, 7.48 4.95, 4.85 21.9, 52.1 3.06, 2.98 3.20, 3.07 1420, 1722

3 5 2000 3.94 327 5.66 1954 6.08, 4.59 4.64, 3.99 115, 312 7.22, 6.09 7.42, 6.21 1868, 1952

1 4 2000 2.56 443 8.51 1958 3.90, 2.99 3.24, 2.63 237, 420 12.5, 9.42 12.77, 9.53 1941, 1970

0.3 5 2000 1.795 971 14.0 1988 2.50, 2.00 2.31, 1.86 817, 950 23.6, 16.1 23.7, 16.1 1986, 1990

0.1 3 2000 1.379 496 19.8 1970 1.782, 1.510 1.573, 1.368 433, 494 32.1, 21.5 31.6, 20.8 1982, 1988

0.03 3 2000 1.192 553 32.9 1969 1.368, 1.234 1.262, 1.163 526, 555 50.7, 33.2 48.5, 31.1 1991, 1994

0.01 2 2000 1.080 286 42.5 1937 1.179, 1.112 1.097, 1.058 273, 284 65.6, 43.2 58.4, 37.0 1992, 1995
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are able to predict all four dynamic instability parameters:
velocities of growth and shortening and frequencies of catas-
trophe and rescue �see Sec. III�. We demonstrate how to
recapitulate the macroscopic steady-state behavior of MTs
using mesoscopic rates and, vice versa, extract mesoscopic
rates from macroscopic behavior. Hence, it is possible to
analytically and quantitatively predict the effect of changes
in mesoscopic parameters on observable features, as well as
to deduce mesoscopic changes from observed changes in
macroscopic behavior, when relevant geometry and chemis-
try are taken into account.

The key ingredient in establishing a link between meso-
parameters and macroparameters is the cap model, which
allows one to replace the actual cap consisting of many units
with an effective single unit. We demonstrate that the cap
model behavior agrees with experiments measuring catastro-
phe frequency as a function of free tubulin concentration as
well as with dilution experiments.

The model yields the following additional new results.
For a cell of a given size, number of MT nuclei, and amount
of total tubulin, we analyze conservation of tubulin mass
equations �21� and �22� governing the balance between po-

lymerized and free tubulin. This results in description of par-
titioning of tubulin, distribution of MT lengths, and macro-
scopic rates of the dynamic instability. We also demonstrate
that, by restricting the growth of MTs, the edge can raise the
free Tu concentration above its critical value for an un-
bounded domain, leading to a persistent MT growth inside
the cell �in agreement with numerical simulations �24��.
Also, an increase in nucleation activity results in an increase
of the number of MTs and a decrease in their average length,
reducing the edge effect. Thus, by regulating the nucleation
activity, the cell can transition between interphase and mi-
totic arrays of MTs. These predictions can be experimentally
verified.

Last, we show a very good agreement between our Monte
Carlo simulations and analytical results. We also use the
Monte Carlo model to provide an explanation for the nonex-
ponential MT length distributions observed in experiments.
This might be happening because of these distributions not
having enough time for relaxing to an exponential shape
characteristic of a steady state �see also �50,51��.

We are currently working on incorporating a molecular-
level model describing individual MT protofilament structure
into a unified multiscale model for investigating effects of
various microtubule associated proteins �MAP’s� on dynamic
instability. It might be feasible to go first from the molecular
to the mesoscopic level, either numerically or, perhaps, even
analytically. Then, using the results of the present paper, one
could go from mesoscopic to macroscopic scale and compare
multiscale model predictions with experimental data at the
macroscopic scale.
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APPENDIX A: COMPUTATIONAL MODEL

In what follows we provide a short description of the
numerical algorithm used for our simulations, which slightly

FIG. 6. Histogram of MT lengths after 150 s from the beginning
of polymerization. The concentration of free Tu is 1.382 �M and
has reached its steady-state value �to within random fluctuations�.
Kh=0.1 s−1, ctot=3�M, and the rest of the parameters are specified
in Table II. Note the bimodal character of the distribution.

FIG. 5. Histograms of MT lengths after 80 s �top� and 160 s
�bottom� from the beginning of polymerization. The concentration
of free Tu in both cases is close to steady-state value: 7.63 and
7.51 �M, respectively. Although the concentration has reached
steady state after 80 s, the length distribution of MTs is still chang-
ing. Here Kh=10 s−1, ctot=10 �M, and the rest of the parameters
are specified in Table II.
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differs from that used in �24�. At time zero, MTs begin to
grow from the nucleation seeds. At each simulation step, the
time of this step is calculated by defining the rates of change
in length �either growth or shortening� for each MT. If the
MT tip is in T �D� state, then this rate of change is K
=KgT�gD�+KsT�sD�. We demand that the maximal average
number of changes for each MT will be 1, which means that
we find a maximal value among all K and then set 
t
=1/maxMTs�K� �a technical note—we set 
t slightly below
this value because the rate K for a given MT can change
slightly as c is affected after each MT changes its length;
these changes in c are usually very small�. Then, in general,
each MT will have a chance to grow, shorten, or retain its
length during 
t. We do not allow a distribution of the pos-
sible number of length changes for a MT during 
t �only
zero or one change is possible�. After the length of each MT
is updated, we update c accordingly. After updating the
lengths of all MTs, the hydrolysis cycle runs through all
internal units of all MTs. The probability that a unit will
hydrolyze during time 
t is taken as 1−e−Kh
t, assuming
Poisson statistics.

All MTs have their first unit in the D state and this unit
cannot be lost—this constitutes a simple nucleation seed
with lower growth probability than when the MT tip is in the
T state �these units are not counted when calculating the
lengths of the MTs�. Similarly, when the edge is relevant we
can assume Ke=KsT. Such choices are made purely to reduce
the number of parameters in the system and are not essential
for our purposes.

APPENDIX B: EXPLICIT SOLUTION
IN THE BOUNDED DOMAIN

In what follows we obtain expressions for NMT and m in
the bounded domain at the steady state. Notice that in our
model all the MTs of maximum length L are technically in
the growing phase, because their terminal unit can never be-
come internal and therefore does not hydrolyze. �These MTs
cannot grow because of the edge.� The edge-induced catas-
trophe rate Ke will be governed by the smallest of the rates
KsT and Kh. The discrete version of Eqs. �14� and �15� deter-
mining a steady state at the boundary,

0 = − KeMg�L� + KgDMs�L − 1� + KgT
ef fMg�L − 1� , �B1�

0 = KeMg�L� − KgDMs�L − 1� − KsDMs�L − 1� . �B2�

After summing up these two equations we recover

Ms�L − 1� = �KgT
ef f/KsD�Mg�L − 1� , �B3�

which is already known �cf. Eq. �19�� and so one of these
equations is superfluous. Another way to find Mg,s is to write
a general solution of Eqs. �14� and �15�, Mg=Ae−z/�+B and
Ms= �KgT

ef f /KsD�Ae−z/�+ �KsT
obs /KgD�B, and plug it into Eq.

�B3�, yielding B=0, unless �KsT
obsKsD� / �KgT

ef fKgD�=1, in which
case B is arbitrary. But this last condition implies �→� and
hence Mg,s are constant inside the domain. At the lower do-
main boundary, Eq. �24� still holds.

The number of MTs is given now by

NMT = �
l=1

L−1

�Mg�l� + Ms�l�� + Mg�L� = Nn − N0. �B4�

Using Eqs. �16�, �17�, �24�, and �B1� and replacing the sum-
mation by the integration from 0 to L we can determine A
and hence NMT, which is given in Eq. �28�.

Similarly, the mean MT length is

m =

�
l=1

L−1

l�Mg�l� + Ms�l�� + LMg�L�

�
l=1

L−1

�Mg�l� + Ms�l�� + Mg�L�

, �B5�

leading to Eq. �29�.

APPENDIX C: OSCILLATIONS

In some of the simulations we observed an overshoot in
free Tu concentration before the steady state was reached.
Moreover, in some cases there were slight oscillations of free
Tu concentration, as shown in Fig. 7. Overshoots and large
oscillations have been reported and modeled in the literature
�9,12,30,52–56�. It is believed that slow conversion of D-
into T-tubulin in solution, after the depolymerization, is the
key to understanding of such oscillations. These oscillations
occur if the initial free Tu concentration is sufficiently large.

Free D-tubulin cannot polymerize. In our model we as-
sume its conversion into T-tubulin to be instantaneous. We
also use a linear �and not higher order� dependence of the
nucleation rate of the free Tu concentration and a fixed num-
ber of nucleation sites. It is remarkable that under these re-
strictive assumptions the model produced some oscillations.
We suggest the following explanation for their existence,
which is in agreement with �54�. If the hydrolysis is slow
enough, the MTs grow quickly in the beginning, resulting in
a large cap. When the free Tu concentration changes quickly,
the cap needs a relatively long time to adjust. This leads to a
delayed response and possibly to oscillations. Hence it might
be that the ability to produce oscillations is inherent to MT
structure and that it can be magnified under certain experi-
mental conditions.

FIG. 7. �Color online� Small oscillations in the amount of poly-
merized Tu observed in numerical simulations for Kh=0.1 s−1, ctot

=50 �M, and Nn=104. Other parameters are as in Table II. The
inset is a blowup of the region of oscillations.
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